import sys
import random
from bisect import bisect_left as lb
from bisect import bisect_right as rb
from collections import deque
from queue import PriorityQueue as pq
from math import gcd
input_ = lambda: sys.stdin.readline().strip("\r\n")
ii = lambda : int(input_())
il = lambda : list(map(int, input_().split()))
ilf = lambda : list(map(float, input_().split()))
lii = lambda : list(map(int, list(ip())))
ip = lambda : input_()
fi = lambda : float(input_())
ap = lambda ab,bc,cd : ab[bc].append(cd)
li = lambda : list(input_())
pr = lambda x : print(x)
prinT = lambda x : print(x)
f = lambda : sys.stdout.flush()
inv =lambda x:pow(x,mod-2,mod)
dx = [0,0,1,-1]
dy = [1,-1,0,0]
mod = 10**9 + 7
mod1 = 998244353
for _ in range (ii()) :
ip()
n = ii()
a = []
for i in range (n) :
a.append(list(ip()))
b = [0 for i in range (n+2)]
t = 0
for i in range (n) :
for j in range (n) :
if (a[i][j] == '1') :
t += 1
if (i > j) :
b[i-j] += 1
else :
b[n - j + i] += 1
mn = 0
for i in b :
mn = max(mn,i)
print(t + n - 2*mn)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
typedef pair <string, string> pss;
typedef vector <int> vi;
typedef vector<bool> vb ;
typedef vector<string> vs ;
typedef vector <vi> vvi;
typedef vector<pii> vpii;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<pll> vpll;
const ll INF = 1000000000+7 ;
const ll MOD = 998244353 ;
#define all(X) (X).begin(), (X).end()
#define allr(X) (X).rbegin(), (X).rend()
#define sz(X) (int)X.size()
#define setbits(X)(long long) __builtin_popcountll(X)
#define fastio() ios_base::sync_with_stdio(false); cin.tie(NULL);
#define fi first
#define se second
#define pb push_back
#define maxxbysec [](const auto& lhs, const auto& rhs) { return lhs.second < rhs.second; }
bool sortbysec(const pair<auto,auto> &a,
const pair<auto,auto> &b){
return (a.second < b.second);}
void solve();
vector<bool> is_prime(1e7+1, true);
void sieve(){
is_prime[0] = is_prime[1] = false;
for (ll i = 2; i <= 1e7 ; i++) {
if (is_prime[i] && 1ll*i * i <= 1e7) {
for (ll j = 1ll*i * i; j <= 1e7; j += i)
is_prime[j] = false;
}
}}
ll binpow(ll a, ll b , ll mod = INF) {
if( b == 0 )
return 1 ;
ll res = 1 , x = a ;
for( ll i = 0 ; i < 63 ; ++i ){
if( (1ll<<i) & b )
res = (res*x) % mod ;
x = (x*x) % mod ;
}
return res ;
}
ll fact( ll n , ll mod = INF){
ll res = 1 ;
for( ll i = 1 ; i <= n ; ++i )
res = (res*i)%mod ;
return res ; }
vll factorization(ll n) {
vector<long long> factorisation;
for (long long d = 2; d * d <= n; d++) {
while (n % d == 0) {
factorisation.push_back(d);
n /= d;
}
}
if (n > 1)
factorisation.push_back(n);
return factorisation;}
class DisjointSet{
public:
vector<ll> parent;
vector<ll> size;
void make_set(ll n){
parent.resize(n, 0);
size.resize(n, 1);
for(ll i = 0 ; i < n ; i++)
parent[i]= i;
}
ll find_set(ll v) {
if (v == parent[v]) // Path Compression
return v;
return parent[v] = find_set(parent[v]);
}
void union_sets(ll u, ll v) {
v = find_set(v);
u = find_set(u);
if (v != u) {
if (size[v] < size[u])
swap(v, u);
parent[u] = v;
size[v] += size[u];
}
}
ll len( ll u ){
return size[find_set(u)] ;
}};
int main()
{
fastio();
long long t=1;
cin>>t;
while(t--){
solve();
}
return 0;
}
void solve(){
ll n ;
cin >> n ;
vs v(n) ;
ll ones = 0 ;
for( ll i =0 ; i < n ; ++i ){
cin >> v[i] ;
ones += count( all(v[i]) , '1' ) ;
}
ll maxx = 0 ;
for( ll i = 0 ; i < n ; ++i ){
ll r = 0 , c = i , lres = 0 ;
do{
lres += (v[r][c]-'0') ;
r = (r+1)%n ;
c = (c+1)%n ;
}while( r != 0 ) ;
maxx = max( maxx , lres ) ;
}
cout << ones-maxx + (n-maxx)<<'\n' ;
}
442. Find All Duplicates in an Array | 437. Path Sum III |
436. Find Right Interval | 435. Non-overlapping Intervals |
406. Queue Reconstruction by Height | 380. Insert Delete GetRandom O(1) |
332. Reconstruct Itinerary | 368. Largest Divisible Subset |
377. Combination Sum IV | 322. Coin Change |
307. Range Sum Query - Mutable | 287. Find the Duplicate Number |
279. Perfect Squares | 275. H-Index II |
274. H-Index | 260. Single Number III |
240. Search a 2D Matrix II | 238. Product of Array Except Self |
229. Majority Element II | 222. Count Complete Tree Nodes |
215. Kth Largest Element in an Array | 198. House Robber |
153. Find Minimum in Rotated Sorted Array | 150. Evaluate Reverse Polish Notation |
144. Binary Tree Preorder Traversal | 137. Single Number II |
130. Surrounded Regions | 129. Sum Root to Leaf Numbers |
120. Triangle | 102. Binary Tree Level Order Traversal |